December, 10, 2016, 02:04 3dfxzone.it  ][  amdzone.it  ][  atizone.it  ][  enboard  ][  forumzone.it  ][  hwsetup.it  ][  nvidiazone.it  ][  unixzone.it 
 

 

   
Mobile
RSS
Tags
Sitemap
Contact us
About us
         your source for 3dfx and games
 
Home   ][   News   ][   Games   ][   Articles   ][   3dfx Hardware   ][   3dfx Software   ][   Video   ][   Components   ][   Tools   ][   Forums
 








 
Main

News
Headlines
Games
Articles
3dfx Hardware
3dfx Software
Video Cards
Components
Tools
File Browser
Communities
Contact Us

Voodoo Cards
3dfx Headlines
3dfx Articles
Voodoo1
Voodoo2
Banshee
Voodoo3
Voodoo4/5
VoodooTV
Latest Drivers
Our Releases
Hot Files
 
Games Settings
 
Best Settings
 
TnL Patches
 
MesaFX
 
WickedGL
 
Glide 3x
 
Official FAQ
 
Just For Fun
 
Main menu
Components

Processors
Motherboards
RAM Memories
Video Cards
Audio Cards
HDDs/SSDs
Optical Burners
Web Connectivity
Drivers Index
Main menu

Video Cards

AMD/ATI
Matrox
NVIDIA
S3 Graphics
XGI
Main menu

Tools
Antivirus
Benchmarks
Data Recovery
Mastering
Screensavers
Video
File Sharing
Tweakers
3D-Analyze
Windows Tools
Uninstallers
Mobile Phones
Tools Index
Main menu
Games
Bonus Packs
Demos
DirectX
Latest MAME
Patches
Screenshots
System Requirements
Trailers
Main menu
Communities
 
 05.05.2011   Intel apre l'era dei transistor 3D, o Tri-Gate, pronti per Ivy Bridge
 

Con il comunicato stampa di seguito allegato, Intel Corporation ha annunciato una innovazione tecnologica destinata ad inaugurare una nuova era nel mondo dell'elettronica: il transistor 3D, denominato Tri-Gate. Più in dettaglio, la notizia non risiede tanto nella introduzione del dispositivo in se, dal momento che il suo sviluppo è stato completato dalla stessa Intel nel 2002, ma nel passaggio di questo in produzione.

Intel, infatti, si è detta pronta a supportare la produzione in volumi dei Tri-Gate, ottenuti con un processo di fabbricazione a 22nm: essi saranno alla base dei processori "Ivy Bridge", con i quali Intel rinnoverà la linea di cpu Core, attualmente basata sui chip "Sandy Bridge"; successivamente, la nuova tecnologia sarà estesa anche al mondo Atom. L'avvio della produzione degli "Ivy Bridge" avrà luogo alla fine del 2011; il lancio commerciale degli stessi si concretizzerà invece soltanto nel 2012.

I transistor a tre dimensioni Tri-Gate rappresentano una fondamentale evoluzione delle attuali soluzioni planari a due dimensioni, che da oltre 50 anni sono alla base di qualsiasi sistema elettronico, indipendentemente dall'ambito a cui questo è indirizzato, e che a loro volta hanno innescato una rivoluzione sostituendo le valvole; i Tri-Gate, infatti, hanno un punto di polarizzazione più basso di qualsiasi transistor attualmente sul mercato, pur offrendo prestazioni superiori.

In accordo alla stessa Intel, i transistor Tri-Gate a bassa polarizzazione offrono performance superiori del 37% rispetto ai transistor planari a 32nm prodotti dallo stesso maker (questa feature fa capire la naturale predisposizione per l'impiego dei Tri-Gate nell'ambito mobile, ndr); da un altro punto di vista, non meno significativo, i nuovi transistor 3D offrono le stesse prestazioni di quelli 2D, ma consumano la metà.


[Immagine ad alta risoluzione]


Intel Corporation today announced a significant breakthrough in the evolution of the transistor, the microscopic building block of modern electronics. For the first time since the invention of silicon transistors over 50 years ago, transistors using a three-dimensional structure will be put into high-volume manufacturing. Intel will introduce a revolutionary 3-D transistor design called Tri-Gate, first disclosed by Intel in 2002, into high-volume manufacturing at the 22-nanometer (nm) node in an Intel chip codenamed "Ivy Bridge." A nanometer is one-billionth of a meter.

The three-dimensional Tri-Gate transistors represent a fundamental departure from the two-dimensional planar transistor structure that has powered not only all computers, mobile phones and consumer electronics to-date, but also the electronic controls within cars, spacecraft, household appliances, medical devices and virtually thousands of other everyday devices for decades.

"Intel's scientists and engineers have once again reinvented the transistor, this time utilizing the third dimension," said Intel President and CEO Paul Otellini. "Amazing, world-shaping devices will be created from this capability as we advance Moore's Law into new realms."

Scientists have long recognized the benefits of a 3-D structure for sustaining the pace of Moore's Law as device dimensions become so small that physical laws become barriers to advancement. The key to today's breakthrough is Intel's ability to deploy its novel 3-D Tri-Gate transistor design into high-volume manufacturing, ushering in the next era of Moore's Law and opening the door to a new generation of innovations across a broad spectrum of devices.

Moore's Law is a forecast for the pace of silicon technology development that states that roughly every 2 years transistor density will double, while increasing functionality and performance and decreasing costs. It has become the basic business model for the semiconductor industry for more than 40 years.

Unprecedented Power Savings and Performance Gains
Intel's 3-D Tri-Gate transistors enable chips to operate at lower voltage with lower leakage, providing an unprecedented combination of improved performance and energy efficiency compared to previous state-of-the-art transistors. The capabilities give chip designers the flexibility to choose transistors targeted for low power or high performance, depending on the application.

The 22nm 3-D Tri-Gate transistors provide up to 37 percent performance increase at low voltage versus Intel's 32nm planar transistors. This incredible gain means that they are ideal for use in small handheld devices, which operate using less energy to "switch" back and forth. Alternatively, the new transistors consume less than half the power when at the same performance as 2-D planar transistors on 32nm chips.

"The performance gains and power savings of Intel's unique 3-D Tri-Gate transistors are like nothing we've seen before," said Mark Bohr, Intel Senior Fellow. "This milestone is going further than simply keeping up with Moore's Law. The low-voltage and low-power benefits far exceed what we typically see from one process generation to the next. It will give product designers the flexibility to make current devices smarter and wholly new ones possible. We believe this breakthrough will extend Intel's lead even further over the rest of the semiconductor industry."

Continuing the Pace of Innovation – Moore's Law
Transistors continue to get smaller, cheaper and more energy efficient in accordance with Moore's Law – named for Intel co-founder Gordon Moore. Because of this, Intel has been able to innovate and integrate, adding more features and computing cores to each chip, increasing performance, and decreasing manufacturing cost per transistor.

Sustaining the progress of Moore's Law becomes even more complex with the 22nm generation. Anticipating this, Intel research scientists in 2002 invented what they called a Tri-Gate transistor, named for the three sides of the gate. Today's announcement follows further years of development in Intel's highly coordinated research-development-manufacturing pipeline, and marks the implementation of this work for high-volume manufacturing.

The 3-D Tri-Gate transistors are a reinvention of the transistor. The traditional "flat" two-dimensional planar gate is replaced with an incredibly thin three-dimensional silicon fin that rises up vertically from the silicon substrate. Control of current is accomplished by implementing a gate on each of the three sides of the fin – two on each side and one across the top -- rather than just one on top, as is the case with the 2-D planar transistor. The additional control enables as much transistor current flowing as possible when the transistor is in the "on" state (for performance), and as close to zero as possible when it is in the "off" state (to minimize power), and enables the transistor to switch very quickly between the two states (again, for performance).

Just as skyscrapers let urban planners optimize available space by building upward, Intel's 3-D Tri-Gate transistor structure provides a way to manage density. Since these fins are vertical in nature, transistors can be packed closer together, a critical component to the technological and economic benefits of Moore's Law. For future generations, designers also have the ability to continue growing the height of the fins to get even more performance and energy-efficiency gains.

"For years we have seen limits to how small transistors can get," said Moore. "This change in the basic structure is a truly revolutionary approach, and one that should allow Moore's Law, and the historic pace of innovation, to continue."

World's First Demonstration of 22nm 3-D Tri-Gate Transistors
The 3-D Tri-Gate transistor will be implemented in the company's upcoming manufacturing process, called the 22nm node, in reference to the size of individual transistor features. More than 6 million 22nm Tri-Gate transistors could fit in the period at the end of this sentence.

Today, Intel demonstrated the world's first 22nm microprocessor, codenamed "Ivy Bridge," working in a laptop, server and desktop computer. Ivy Bridge-based Intel Core family processors will be the first high-volume chips to use 3-D Tri-Gate transistors. Ivy Bridge is slated for high-volume production readiness by the end of this year.

This silicon technology breakthrough will also aid in the delivery of more highly integrated Intel Atom processor-based products that scale the performance, functionality and software compatibility of Intel architecture while meeting the overall power, cost and size requirements for a range of market segment needs.





Source: Intel Press Release
Links

Tags: 3d  |  intel  |  ivy bridge  |  transistor  |  tri-gate

 PREVIOUS MORE NEWS GO BACK NEXT 


[ Go Back ]

Latest News
Prime foto della motherboard gaming-oriented Aorus Z270X-Gaming 7 di GIGABYTE

Benchmark Utilities: PassMark PerformanceTest 9.0 build 1006

GPU Information Utilities: GPU-Z 1.13.0 - AMD Radeon Pro Duo Ready

Qualcomm annuncia Centriq 2400, i primi processori per server prodotti a 10nm

Intel lancerà i processori high-end Skylake-X e Kaby Lake-X nel Q317

Slitta leggermente la data di rilascio del game Space Hulk: Deathwing

Capcom pubblica tre gameplay trailer del Resident Evil 7: Biohazard

Microsoft dimostra che un SoC ARM può eseguire Windows 10 e le app Win32

CudaText 1.5.4.0 è un editor di sviluppo open source con plug-in in Python

Un driver per MacOS svela due nuove GPU AMD: Polaris 12 e Polaris 10 XT2
more News 
Latest Utilities Latest Drivers
Passmark PerformanceTest 9.0 bui...

GPU-Z 1.13.0

CudaText 1.5.4.0

USB Oblivion 1.11.2.0

FastCopy 3.26
more Utilities 
AMD Radeon Software Crimson Edit...

Samsung NVM Express Driver 2.0

AMD Radeon Software Crimson Edit...

AMD Radeon Software Crimson Edit...

AMD Radeon Software Crimson Edit...
more Drivers 
Latest Trailers Latest Screenshots
Resident Evil 7 - GamePlay video...

Resident Evil 7 - GamePlay video...

Resident Evil 7 - GamePlay video...

The Last of Us Part II - PlaySta...

Mass Effect: Andromeda - Officia...
more Trailers 
Space Hulk: Deathwing #2

Space Hulk: Deathwing

Conan Exiles

Final Fantasy XV #6

Forza Horizon 3
more Screenshots 
Latest Demos Latest Patches
Forza Horizon 3 Demo

[Official] METAL GEAR SURVIVE: T...

Unity Adam Demo - Full Version

Unity GDC Demo - Adam - Part I

PlayStation VR - PSX 2015 Tech D...
more Demos 
DOOM Update #2

Rise of the Tomb Raider PC Patch...

Rise of the Tomb Raider PC Patch...

Rise of the Tomb Raider PC Patch...

Star Wars Battlefront - Update D...
more Patches 

Advertising
Help

Search 3dfxzone.it
Search with TAGs
Search the Web
Sitemap
Translator

Other Services

Feed RSS



Print This
Our History

Contact Us

User Support
Advertising
Partnership
Banner Exchange
Webmaster
Main menu

Our Network
3dfxzone.it
AMDZone.it
ATIZone.it
HWSetup.it
ForumZone.it
NVIDIAZone.it
UnixZone.it
Hosted Sites
KoolSmoky Home
Rosario Gallery
 
Hardware Setup    |    Site Map    |    Translator    |    News Archive    |    Links    |    Contact Us    |    Legal Notes    |    Privacy
 

On line since Q1 2001    |    Web Application and Contents © 3dfxzone.it    |    All Rights Reserved